Computational Modeling of Neuronal Systems
(Advanced Topics in Mathematical Physiology: G63.2855.001, G80.3042.004)

Thursday, 9:30-11:20am, WWH Rm 1314.

Prerequisites: familiarity with linear algebra, applied differential equations, statistics and
probability.

Grad credit: 3 points

John Rinzel, rinzel@cns.nyu.edu, x83308, Courant Rm 521, CNS Rm 1005

This course will focus on computational modeling of neuronal systems, from cellular to
system level, from models of physiological mechanisms to more abstract models of
information encoding and decoding. We will address the characterization of neuronal
responses or identification of neuronal computations; how they evolve dynamically; how
they are implemented in neural ware; and how they are manifested in human/animal
behaviors. Modeling will involve deterministic and stochastic differential equations,
information theory, and Bayesian estimation and decision theory. Lecturers from NYU
working groups will present foundational material as well as current research.

Examples will be from various neural contexts, including visual and auditory systems,
decision-making, motor control, and learning and memory.

Students will undertake a course project to simulate a neural system, or to
compare a model to neural data. Abstract (Nov 15), written report and oral
presentation (Dec 13). There may be occasional homework.


mailto:rinzel@cns.nyu.edu

Computational Neuroscience

What “computations” are done by a neural system?

How are they done?

WHAT?
Feature detectors, eg visual system.
Coincidence detection for sound localization.
Memory storage.
Code: firing rate, spike timing.

Statistics of spike trains
Information theory
Decision theory
Descriptive models

HOW?
Molecular & biophysical mechanisms at cell &
synaptic levels — firing properties, coupling.
Subcircuits.
System level.



Course Schedule. * JR away
Introduction to mechanistic and descriptive modeling, encoding concepts.

Sept 6 Rinzel: “Nonlinear neuronal dynamics |: mechanisms of cellular
excitability and oscillations”

Sept 17 Rinzel: “Nonlinear neuronal dynamics Il: networks.”

Sept 20* Simoncelli: “Descriptive models of neural encoding: LNP cascade”

Sept 27* Paninski: “Fitting LIF models to noisy spiking data”

Decision-making. Glimcher: Decisions, Uncertainty, and the Brain.

Oct 4 Glimcher: The Science of Neuroeconomics

Oct 11 Daw: “Valuation and/or reinforcement learning”

Oct 18 Rinzel: “Network models (XJ Wang et al) for decision making”

Vision.

Oct 25 Movshon: "Cortical processing of visual motion signals”

Nov 1 Rubin/Rinzel: “Dynamics of perceptual bistability”

Nov 8* Cai/Rangan: “Large-scale model of cortical area V1.”

Nov 15 Tranchina: “Synaptic depression: from stochastic to rate model;
application to a model of cortical suppression.”

Nov 22 no class (Thanksgiving)

Synchronization/correlation.
Nov 29 Pesaran: “Correlation between different brain areas”
Dec 6 Reyes: “Feedforward propagation in layered networks”



Nonlinear Dynamics of Neuronal Systems
-- cellular level

John Rinzel
Computational Modeling of Neuronal Systems
Fall 2007



References on Nonlinear Dynamics

Rinzel & Ermentrout. Analysis of neural excitability and oscillations. In
Koch & Segev (see below). Also as “Meth3” on www.pitt.edu/~phase/

Borisyuk A & Rinzel J. Understanding neuronal dynamics by geometrical
dissection of minimal models. In, Chow et al, eds: Models and Methods in
Neurophysics (Les Houches Summer School 2003), Elsevier, 2005: 19-72.

|zhikevich, EM: Dynamical Systems in Neuroscience. The Geometry of
Excitability and Bursting. MIT Press, 2007.

Edelstein-Keshet, L. Mathematical Models in Biology. Random House, 1988.

Strogatz, S. Nonlinear Dynamics and Chaos. Addison-Wesley, 1994.

References on Modeling Neuronal System Dynamics

Koch, C. Biophysics of Computation, Oxford Univ Press, 1998. Esp. Chap 7
Koch & Segev (eds): Methods in Neuronal Modeling, MIT Press, 1998.

Wilson, HR. Spikes, Decisions and Actions, Oxford Univ Press, 1999.



Dynamics of Excitability and Oscillations

Cellular level Network level
(spiking) (firing rate)
Hodgkin-Huxley model Wilson-Cowan model

Membrane currents Activity functions

Activity dynamics in the phase plane

Response modes: Onset of repetitive activity
(bifurcations)



Nonlinear Dynamical Response Properties

Cellular: “HH”
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Auditory brain stem neurons fire phasically, not to slow
inputs. Blocking I ;  may convert to tonic.

J Neurosci, 2002
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Take Home Messages

Excitability/Oscillations : fast autocatalysis + slower
negative feedback

Value of reduced models
Time scales and dynamics
Phase space geometry

Different dynamic states — “Bifurcations™; concepts and
methods are general.

XPP software:http://www.pitt.edu/~phase/  (Bard Ermentrout’s home page)



/ Synaptic input — many, O(103 to 104)
/ “Classical” neuron

Dendrites, 0.1 to 1 mm long

Signals: V,,~ 100 mV membrane potential
O(msec)
lonic currents

V(t) Membrane with ion channels —
AXGH variable density over surface.
10-103 . .
0-10% mm Dendrites — graded potentials,
linear in classical view
neurons,

muscles 7 Axon — characteristic impulses, propagation



Electrical Activity of Cells

« V =V(x,t), distribution within cell
 uniform or not?, propagation?
*Coupling to other cells
*Nonlinearities
*Time scales
Current balance equation for membrane:

oV d 02V .
Cm ot +|ion(v)_ 4R, 9 X2 + Iapp + Coupllng
capacitive channels cable properties other cells

Coupling: 2 gc’j(Vj—V) “electrical” - gap junctions
J

other cells/
\ Z gsyn,j(vj(t)) (Vsyn'V) chemical synapses
J
Iion = Iion(V,W) generally nonlinear
=Y g (V,W) (V-V, ) OW/d t = G(V,W)
k

gating dynamics

" channel types



J. Physiol. (1952) 117, 500-544

A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION
AND EXCITATION IN NERVE

By A. L. HODGEIN anp A F. HUXLEY
From the Physiological Laboratory, University of Cambridge
: (Received 10 March 1952)

Alan Llovd Hodgkin Andrew Fielding Huxley

Nobel Prize, 1959




Bernstein (1902)
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HH Recipe:
V-clamp = |, components

Predict |-clamp behavior?

I (t) 1s monotonic; activation gate, n
I, (t) 1s transient; activation, m and
Inactivation, h

.. 2(t) = I (0) /(V-V) = Gy n¥(t)
with V=V
gating kinetics:
dn/dt=a(V) (1-n) = B(V) n
= (,,(V) — n)/z,(V)
n_(V) increases with V.

clamp

mass action for “subunits” or HH-"particles”

OFF 4y ON
b
B(V)

INa(t) - GNam3(t) h(t) (V_VNa)

8 PHARMACOLOGICAL BLOCKAGE

a. Control (! yo4a1) | .

Figure 7. B, Separation of josic cacrenes by use of secve poisons. o, Response in
nocmal seawater; different amplivades of voltsge seps ave indicated on the right (in
mV). b, Response duc to I whes L, is bocked by reerndosoxin (TTX). ¢, Response
due t0 Ly, when Iy is blocked by sesaethylammmoniun: (TEA). (From Hille, 1977).

ing o the cell) followed by aa outward movement of posicive corrent (see
Figaee 9; solid kinc). g

At vhis point, we need 10 define a bic of terminology that will be usehal.
Ja simple terms, jonic carrent through excitable memboasies is cosmolled
by two factors: (1) an ioa-selective pore through whick omly corrsin ions
can flow, and (2) a gate or gates that open(s) and closels) tke pove w0 aliow
jomic flux. The turning on of a current is known as the activation of the
current and the opposite of activation is known as desctivatior. These: proc-
emes occur when an activation gate opens or closes. K 2 aarent wmems om
and then off despite a constant change in membrane potential, it is said to
imactivate. The reverse of inactivation is deinactivation. Inactivation and



HH Equations

C,, dV/dt+ Gy, m* h (V-V,) + G n* (V-V) +G, (V-V,) = Lipp
space-clamped

dm/dt =p [m_(V)-m]/z_(V)

db/dt =¢ [h,(V) - h]/7,(V) mm) oy T Mg 10
dn/dt=¢ [n_(V) —n]/t (V) os b ; :
¢, temperature Jos o
correction factor _ , i
= Q,,**[(temp-temp,)/10] A7 A— o 0
HH: Q,,=3 o0 o0
Reconstruct action potential o
) . it?%i;i:nﬁa]
Time course : Eu 185 \‘_J.“"
Velocity Vot == | l: 3
ThI'eSh01d . Na channels e 1}
Refractory period : o Y&
—so} K channels C.(—- Q
Ton fluxes ; K 2.0
Repetitive firing? £ m——l
—

| meee
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HH model is a mean-field
model that assumes an

adequate density of channels.

1 um? has about
100 Na"and K*
channels.
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Figure 3: Membrane Response without Injection Current

The membrane medel is simulated with standard biophysical parameters for squid ax-
onal membrane (Crm, Ena, Ex, Er, 9z) and with no current injection ([fipject = 0:—:,—}. The
continuous Hodgkin-Huxley equations and the discrete channel populations are used alter-
natively to represent the membrane conductances gya and gx. As the membrane surface
area is increased, the response from the channel model converges to the response from the
standard Hodgkin-Hudey model. Both models predict that no activity occurs when no cur-
rent is injected. However, as the membrane surface area is decreased, the active behavior
predicted by the channel model diverges dramatically from the lack of activity predicted by
the Hodgkin-Huxley model.



Bullfrog sympathetic
Ganglion “B” cell

Cell is “compact’,
electrically ... but not
for diffusion Ca 2*

MODEL.:
“HH” circuit

+ [Ca?] iy
+ [K+] ext

Yamada, Koch, Adams ‘89
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Cortical Pyramidal Neuron

Complex dendritic branching
Nonuniformly distributed channels

Pyramidal Neuron with axonal tree

Koch, Douglas,
Wehmeier ‘90

Schwark & Jones, ‘89



HH action potential — biophysical time scales.

[-V relations: I (V) L «(V)
steady state  ““instantaneous”

HH: I (V)= Gy, m3(V) h (V) (V-V) + G n A4V) (V-V) +G, (V-V))

ISS W ¢ Ve
monetonl < v
L (V)= Gy, m (V) h (V-V,) + G n(V-Vp) +G, (V-V))
/
fast slow, fixed at holding values

e.g., rest

L g
-

R .




Dissection of HH Action Potential

Fast/Slow Analysis - based on time scale differences

h, n are slow relative
toV,m

|dealize AP to 4 phases l

h,n — constant during
upstroke and downstroke C dV/dt = - T,y (V, m,(V), hg, ng) +1,

Liust.

Upstroke...

R and E — stable 'fi%vév

T - unstable




Repetitive Firing, HH model and others

Response to current step

nerve block
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Repetitive firing in HH and squid axon
-- bistability near onset

Vi {
' N Tsg -\ Linear stability: eigenvalues of
i \ 4x4 matrix. For reduced model
ae + \ s w/ m=m_(V): stability if
_—l:__l-,/‘;" - i ,/”/I aImSt/aV i C /T ~ O
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i T |
e * HH eqgns Squid axon
(I
Interval of bistability @ e ———y B
. . T E =
Rinzel & Miller, ‘80 - 3 .
’ g v A D
£ 1 [
- - poyny l
n —
1|\ :
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Bistability in motoneurons

Journal of Physiology (1988), 405, pp. 5067
With 10 text-figures

Printed in Great Britain

BISTABILITY OF »-MOTONEURONES IN THE DECEREBRATE CAT ¢/
IN THE ACUTE SPINAL CAT AFTER INTRAVENOUS
5-HYDROXYTRYPTOPHAN

By JORN HOUNSGAARD, HANS HULTBORN*, BO JESPERSEN
AND OLE KIEHN

From the Department of Newrophysiology, The Panum Institute, Universily ¢
Copenhagen, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
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2-compartment model; plateau generator in dendrite

A Booth & Rinzel, '95
| | |
[ Na Ca
Morris-Lecar
membrane model Soma w Dendrite
gc
'K-dr IK
Isolated Soma Isolated Dendrite

[ Dendrite “on”
05}
>’ >° 05| s
Dendrite “off”
-1.5

-0.5 0.0 0.5 1.0
ID



Bistability in 2-compt model

Response to up/down ramp; hysteresis

0
0.0 0.2 04 06
IS




Two-variable Model = Phase Plane Analysis

|, — fast, non-inactivating
| -- “delayed” rectifier, like HH'’s |
Morris & Lecar, ‘81 — barnacle musclel

C g% = - Few ey (VD W= Ver) = G ur (Vi)
- é,__(\]-\/.,) -+ I
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Get the Nullclines

dV/dt = - L (VW) + 1,

dw/dt = @ [ w.(V) = w] / 7, (V)

dV/dt=0

Iinst (V’W) = Iapp

w-nullcline

V-nullcline

dw/dt = 0 — A A ANy

w=w,_(V) 4'&? “

rest state



ML model
- excitable
regime

Case of small ¢

traj hugs V-nulicline -
except for up/down
jumps.

Xesponse o
bn]@ L.

“hresho|d .
.S-i'u)g(-e ~esT.

g

20




Re.pef‘]”ﬁ“;tlc F'\«"’Mg m led.Sg f/-zur(.
J

o ‘?61 M—-C. ﬂthb(

Nopp

e

excitrable

\(‘c.fa’f'; 'HV‘C

'p?winy

&apogq,rTao:\'fM sHable sﬁmcﬂy
Llpcle st oF _»

alwo&ck(‘t ol



Repetitive Activity in ML (& HH) '
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Anode Break Excitation or
Post-Inhibtory Rebound (PIR)

+t=0

Vepp g

|, - deactivated =0 fa t <O



Post inhibitory facilitation, PIF,

transient form of PIR ﬂ

Subthreshold nonlinearities: o |
1psp can enhance epsp, al
and lead to spiking e

50 -48 ¢

ol (c;e:;s nS, G=50 NS Vimv) -56 -

0F T=-1.00 1o -60
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40 | / _l\\\--x
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0 Model of “coincidence-detecting”

1 1 L |
46 48 50 52 54
time (ms)

cell in auditory brain stem.
Has a subthreshold K" current I 1.



Theory PIF Experiment (Gerbil MSO, slice)
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Boosting Spontaneous Rate with Fast Inhibition, via PIF

Firing Response to Poisson-G,, train Enhanced by Inhibition (Poisson-G, ;)

Gy ONY: Add G e # of spikes: 10, 15

: hJMll[ N

Std HH model; 100 Hz inputs; . = T,

> Yex 1nh:1 ms

w/ R Dodla. PhysRev E, in press



Adjust param’s - changes nuliclines: case of 3 “rest” states

O, . " @,
- .
3 states =2 | - e ; Jiorsidon
is N-shaped e MW
® @

Stable or Unstable?

3 states — not necessarrily:
stable — unstable — stable.

® small enough,
then both upper/middle
unstable if on middle branch.




ML: @ large - 2 stable steady states

Neuron is bistable: plateau behavior.

l.pp SWitching pulses

Saddle point, with
stable and unstable manifolds

-
7

\

e.g., HH with
V=24 mV



ML: ¢ small = both upper states are unstable

Neuron is excitable with strict threshold.

v J : —

O saddle

rest

threshold
separatrix | / v 0.4 long
Latency

v (t)

|, must be N-shaped.

7 :

l._» can give long latency "y
but not necessary. T



Onset of Repetitive Firing — 3 rest states

SNIC- saddle-node on invariant circle

;;";\l=0
excitable
I
app
saddle-node | v homoclinic orbit;
0.4 infinite period
—— 5
\/ v (t) I
limit cycle -
vl Vi
- -0.6 ! ! r |
0 t 160

emerge w/ large amplitude — zero frequency



ML: ¢ small

freq ~V |-,

low freq but no conductances
very slow

lx. o ? (Connoretal '77)

“Type I” onset

Hodgkin ‘48

Response/Bifurcation diagram

0.4 0sC

= 'r‘*bﬁ“}' s
-0.6 /1 L 3 Iy _ I e

_ Firing frequency starts at 0.

02 ’c}&__ VHO LOdJﬂ .\J U-erxj I}OLAJ

0.0 | L : I
0.0 L i 1z 0.3




Firing rate model (Amari-Wilson-Cowan) for
dynamics of excitatory-inhibitory populations.

T, dr/dt=-r,+S. (a1, -a,1;+ 1)

CCC

t, dr/dt=-r,+ S,(a, r,—a;, + L)

1ee

r;(t), r(t) -- average firing rate (across population and “over spikes”)

T.. T. -- “‘recruitment” time scale A

e’ "1

08 -

4—/
S.(input) , S,(input) — input/output relations, sigmoids

'
S/ /
0.6 /
a,. etc — “synaptic weights” wl 1] / /
| e
/ P 4

——

—



Wilson-Cowan Model
dynamics 1n the phase plane.

XPP Ver 5.8 > westim_ode
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_ “Oscillator Death” but cells are firing
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Transition from Excitable to Oscillatory

Same for W-C network models.
Type ll, minfreq#0
|, monotonic
subthreshold oscill’'ns
excitable w/o distinct threshold
excitable w/ finite latency

Type |, min freq =0
lss N-shaped — 3 steady states
w/0 subthreshold oscillations
excitable w/ “all or none” (saddle) threshold

excitable w/ infinite latency

Hodgkin 48 — 2 classes of repetiitive firing;
Also - Class | less regular IS| near threshold



J Neurophysiol 92: 2283-2294, 2004,
101152 jn.00109.2004.

Threshold Firing Frequency—Current Relationships of Neurons in Rat

Somatosensory Cortex: Type 1 and Type 2 Dynamics

T. Tateno. A. Harsch, and H.P.C. Robinson

Department of Physiology, University of Cambridge, Cambridge CB2 3EG, United Kingdom

Submitted 3 February 2004; accepted in final form 20 May 2004

Tateno, T., A. Harsch, and H.P.C. Robinson. Threshold firing
frequency— current relationships of neurons in rat somatosensory cor-
tex: type | and type 2 dynamics. J Neurophysiol 92: 2283-2204,
2004; 10.1152/jn.00109.2004. Neurons and dynamical models of
spike generation display two different types of threshold behavior,
with steady current stimulation: type 1 [the firing frequency wvs.
current { f~/) relationship is continuous at threshold) and type 2
(dizcontinuous f~)]. The dynamics at threshold can have profound
effects on the encoding of input as spikes, the sensitivity of spike
generation to input noise, and the coherence of population firing. We
have examined the /7 and frequency— conductance ( f~g) relationships
of cells in laver 2/3 of slices of voung (15-21 DIV rat somatosensory
cortex, focusing in detail on the nature of the threshold. Using
white-noise stimulation, we also measured firing frequency and inter-
spike interval variability as a function of noise amplitude. Regular-
spiking (RS) pyramidal neurons show a type | threshold, consistent
with their well-known ability to fire regularly at very low frequencies.
In fast-spiking (FS) inhibitory interneurons, although regular firing is
supported over a wide range of frequencies, there is a clear disconti-
nuity in their 7 relationship at threshold (type 2), which has not
previously been highlighted. FS neurons are unable to support main-
tained periodic firing below a critical frequency f, in the range of 10
to 30 Hz. Very close to threshold, FS cells switch irregularly between
bursts of periodic firing and subthreshold oscillations. These charac-
teristics mean that the dynamics of BS neurons are well suited to
encoding inputs into low-frequency firing rates, whereas the dynamics
of FS neurons are suited to maintaining and quickly synchronizing to
gamma and higher-frequency input.

of these 2 types, which thus represent the behavior of a wide
range of excitable membranes.

Even simple dynamical models of spike generation can
exhibit both kinds of behavior, depending on their parameters
(Morris and Lecar 1981; Rinzel and Ermentrout 1998). In these
models, because of the different natures of dynamical bifurca-
tion at threshold, type 1 behavior is associated with all-or-
nothing spikes, whereas type 2 behavior is associated with
graded spike amplitude and subthreshold oscillations. Re-
cently, modeling studies have shown that the threshold type of
the neuron profoundly affects the reliability of spike generation
in the presence of noise (Gutkin and Ermentrout 1998; Rob-
inson and Harsch 2002). Experimental classification of the
responses of neurons in the cortex, however, has focused
mostly on the form of the frequency vs. current ( /~J) relation-
ship in responses that are well above threshold (Connors and
Gutnick 1990; Kawaguchi and Kubota 1997; Nowak et al.
2003); a clear classification of the continuity or discontinuity of
the f~I relationship at threshold is lacking. Therefore in this
paper we study the thresholds of 2 well-characterized types of
cell—regular-spiking and fast-spiking neurons—and show that
they follow type 1 and type 2 behaviors, respectively. We
discuss what impact this could have on the roles of these 2 cell
types in the cortical network.
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Noise smooths the f-I relation
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to 30 Hz. Very close to threshold, F5S cells switch irregularly between
bursts of periodic firing and subthreshold oscillations. These charac-
teristics mean that the dynamics of RS neurons are well suited to
encoding inputs into low-frequency firing rates, whereas the dynamics
of FS neurons are suited to maimntaining and quickly synchromzing to
gamma and higher-frequency input.
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Take Home Message

Excitability/Oscillations : fast autocatalysis + slower
negative feedback

Value of reduced models
Time scales and dynamics
Phase space geometry

Different dynamic states — “Bifurcations”

XPP software:http://www.pitt.edu/~phase/ (Bard Ermentrout’s home page)



