
Computational Modeling of Neuronal Systems
(Advanced Topics in Mathematical Physiology: G63.2855.001, G80.3042.004)

Thursday, 9:30-11:20am, WWH Rm 1314.
Prerequisites: familiarity with linear algebra, applied differential equations, statistics and 
probability. 
Grad credit: 3 points

John Rinzel, rinzel@cns.nyu.edu, x83308, Courant Rm 521, CNS Rm 1005

This course will focus on computational modeling of neuronal systems, from cellular to 
system level, from models of physiological mechanisms to more abstract models of 
information encoding and decoding.   We will address the characterization of neuronal 
responses or identification of neuronal computations; how they evolve dynamically; how 
they are implemented in neural ware; and how they are manifested in human/animal 
behaviors.  Modeling will involve deterministic and stochastic differential equations, 
information theory, and Bayesian estimation and decision theory. Lecturers from NYU 
working groups will present foundational material as well as current research.  
Examples will be from various neural contexts, including visual and auditory systems, 
decision-making, motor control, and learning and memory. 

Students will undertake a course project to simulate a neural system, or to 
compare a model to neural data.  Abstract (Nov 15), written report and oral 
presentation (Dec 13).  There may be occasional homework.

mailto:rinzel@cns.nyu.edu


Computational Neuroscience
What “computations” are done by a neural system?

How are they done?
WHAT?

Feature detectors, eg visual system.
Coincidence detection for sound localization.
Memory storage.
Code:  firing rate, spike timing.

Statistics of spike trains
Information theory
Decision theory
Descriptive models

HOW?
Molecular & biophysical mechanisms at  cell & 

synaptic levels – firing properties, coupling.
Subcircuits.
System level.



Course Schedule. * JR away
Introduction to mechanistic and descriptive modeling, encoding concepts.
Sept 6 Rinzel: “Nonlinear neuronal dynamics I: mechanisms of cellular 

excitability and oscillations”
Sept 17 Rinzel: “Nonlinear neuronal dynamics II: networks.”
Sept 20* Simoncelli: “Descriptive models of neural encoding: LNP cascade”
Sept 27* Paninski: “Fitting LIF models to noisy spiking data”

Decision-making.
Oct 4 Glimcher: “Neurobiology of decision making.”
Oct 11 Daw: “Valuation and/or reinforcement learning”
Oct 18 Rinzel: “Network models (XJ Wang et al) for decision making”

Vision.
Oct 25 Movshon:  "Cortical processing of visual motion signals"
Nov 1 Rubin/Rinzel: “Dynamics of perceptual bistability”
Nov 8* Cai/Rangan: “Large-scale model of cortical area V1.”
Nov 15 Tranchina: “Synaptic depression: from stochastic to rate model;

application to a model of cortical suppression.”
Nov 22 no class (Thanksgiving)

Synchronization/correlation.
Nov 29 Pesaran: “Correlation between different brain areas”
Dec 6 Reyes: “Feedforward propagation in layered networks”

Glimcher: Decisions, Uncertainty, and the Brain.  
The Science of Neuroeconomics



Nonlinear Dynamics of Neuronal Systems
-- cellular level

John Rinzel
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References on Nonlinear Dynamics
Rinzel & Ermentrout.  Analysis of neural excitability and oscillations. In

Koch & Segev (see below).   Also as “Meth3” on www.pitt.edu/~phase/ 

Borisyuk A & Rinzel J.  Understanding neuronal dynamics by geometrical
dissection of minimal models. In,  Chow et al, eds: Models and Methods in 
Neurophysics (Les Houches Summer School 2003), Elsevier, 2005: 19-72.

Izhikevich, EM: Dynamical Systems in Neuroscience.  The Geometry of 
Excitability and Bursting. MIT Press, 2007.

Edelstein-Keshet, L.  Mathematical Models in Biology. Random House, 1988.

Strogatz, S.  Nonlinear Dynamics and Chaos.  Addison-Wesley, 1994.

References on Modeling Neuronal System Dynamics

Koch, C.  Biophysics of Computation, Oxford Univ Press, 1998. Esp. Chap 7

Koch & Segev (eds): Methods in Neuronal Modeling, MIT Press, 1998.

Wilson, HR. Spikes, Decisions and Actions, Oxford Univ Press, 1999.



Dynamics of Excitability and Oscillations

Cellular level
(spiking)

Network level 
(firing rate)

Hodgkin-Huxley model Wilson-Cowan model

Membrane currents Activity functions

Activity dynamics in the phase plane

Response modes: Onset of repetitive activity
(bifurcations)



Nonlinear Dynamical Response Properties

Cellular: “HH”

brief
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Auditory brain stem neurons fire phasically, not to slow 
inputs. Blocking I KLT may convert to tonic.

J Neurosci, 2002



Take Home Messages

Excitability/Oscillations :  fast autocatalysis + slower
negative feedback

Value of reduced models

Time scales and dynamics

Phase space geometry

Different dynamic states – “Bifurcations”; concepts and
methods are general.

XPP software:http://www.pitt.edu/~phase/     (Bard Ermentrout’s home page) 



Synaptic input – many, O(103 to 104)

Dendrites,  0.1 to 1 mm long

Axon,
10-103 mm

“Classical” neuron 

Signals:  Vm ~ 100 mV  membrane potential
O(msec)
ionic currents

Membrane with ion channels –
variable density over surface.

Dendrites – graded potentials, 
linear in classical view

Axon – characteristic impulses, propagationneurons,
muscles



Electrical Activity of Cells
• V = V(x,t) , distribution within cell 

• uniform or not?, propagation?
•Coupling to other cells
•Nonlinearities
•Time  scales

∂V 
∂ t

∂2 V 
∂ x2Cm +Iion(V)=              + Iapp + coupling

Current balance equation for membrane:

capacitive           channels     cable properties              other cells 

d
4Ri

∑ gc,j(Vj–V)

∑ gsyn,j(Vj(t)) (Vsyn-V)

Coupling: “electrical” - gap junctions

j

j

chemical synapses
other cells

= ∑ gk(V,W) (V–Vk )
Iion = Iion(V,W)

k
channel types

∂W/∂ t = G(V,W) 
gating dynamics

generally nonlinear



Nobel Prize, 1959



Current Balance: 
(no coupling, no cable properties, “steady state” )

0≈ gK(V-VK) + gNa (V-VNa) + gL(V-VL)

V≈
LNaK

LLNaNaKK

ggg
VgVgVg

++
++

Replace E by V



HH  Recipe:

V-clamp  Iion components

Predict I-clamp behavior?

IK(t) is monotonic; activation gate, n
INa(t) is transient; activation, m and 

inactivation, h

e.g., gK(t) = IK(t) /(V-VK) = GK n4(t)
with V=Vclamp

gating kinetics:  
dn/dt = α(V) (1-n) – β(V) n

= (n∞(V) – n)/τn(V)
n∞(V) increases with V.

OFF          ON
P              P*

α(V)

β(V)

mass action for “subunits” or HH-”particles”

INa(t) = GNam3(t) h(t) (V-VNa)



HH Equations

Cm dV/dt + GNa m3 h (V-VNa) + GK n4 (V-VK) +GL (V-VL) = Iapp [+d/(4R) ∂2V/∂x2]

dm/dt =   [m∞(V)-m]/τm(V)
dh/dt =    [h∞(V) - h]/τh(V)
dn/dt =    [n∞(V) – n]/τn(V)

space-clamped
φ
φ
φ

φ,  temperature
correction factor
= Q10**[(temp-tempref)/10]

HH: Q10=3

V

Reconstruct action potential

Time course
Velocity
Threshold
Refractory period
Ion fluxes
Repetitive firing?





1 µm2 has about
100 Na+ and K+

channels.

HH model is a mean-field 
model that assumes an  
adequate density of channels.



Bullfrog sympathetic 
Ganglion “B” cell

Cell is “compact”, 
electrically … but not
for diffusion Ca 2+ 

MODEL:

“HH” circuit
+ [Ca2+] int
+ [K+] ext

gc & gAHP depend on [Ca2+] int

Yamada, Koch, Adams  ‘89



Cortical Pyramidal Neuron

Complex dendritic branching 
Nonuniformly distributed channels

Pyramidal Neuron with axonal tree

Schwark & Jones,  ‘89

Koch, Douglas,
Wehmeier ‘90



HH action potential – biophysical time scales.

I-V relations:       ISS(V)             Iinst(V)     
steady state       “instantaneous”

HH:     ISS(V) =  GNa m∞
3(V)  h∞(V) (V-VNa) + GK n∞4(V) (V-VK) +GL (V-VL)

Iinst(V) =  GNa m∞
3(V)  h (V-VNa) + GK n (V-VK) +GL (V-VL)

fast                         slow, fixed at holding values
e.g., rest 



Dissection of HH Action Potential

Fast/Slow Analysis - based on time scale differences

h, n are slow relative
to V,m

Idealize AP to 4 phases
V

t
h,n – constant during 

upstroke and downstroke

V,m – “slaved” during plateau
and recovery

h,n – constant during 
upstroke and downstroke

Upstroke…

R and E – stable

T - unstable

C dV/dt = - Iinst(V, m∞(V),  hR, nR) + Iapp

R         T E



Repetitive Firing, HH model and others

Response to current step

nerve block

Subthreshold



Repetitive firing in HH and squid axon
-- bistability near onset

Linear stability: eigenvalues of
4x4 matrix.  For reduced model 
w/ m=m∞(V): stability if
∂Iinst/∂V + Cm/τn > 0.

Rinzel & Miller, ‘80

HH eqns Squid axon

Guttman, Lewis & Rinzel, ‘80

Interval of bistability



Bistability in motoneurons



2-compartment model; plateau generator in dendrite

Morris-Lecar
membrane model

Booth & Rinzel, ’95



Bistability in 2-compt model

Response to up/down ramp;  hysteresis

Switching between states



Two-variable Model Phase Plane Analysis

ICa – fast, non-inactivating
IK -- “delayed” rectifier, like HH’s IK

Morris & Lecar, ’81 – barnacle musclel

V
VK VL VCaVrest

negative feedback: slow





Get the Nullclines
dV/dt = - Iinst (V,w) + Iapp

dw/dt = φ [ w∞(V) – w] / τw(V)

V

I inst

w = w rest

w > w rest

dV/dt = 0
Iinst (V,w) = Iapp

w

wrest

V-nullcline

V

w-nullcline

rest state

w= w∞(V)

dw/dt = 0



Case of small φ

traj hugs V-nullcline -
except for up/down
jumps.

ML model
- excitable
regime





Onset is via 
Hopf bifurcation

Repetitive Activity in ML (& HH)

“Type II” onset
Hodgkin ‘48



Anode Break Excitation or  
Post-Inhibtory Rebound (PIR)

IK - deactivated



Subthreshold nonlinearities:
ipsp can enhance epsp, 
and lead to spiking

Post inhibitory facilitation,  PIF,
transient form of PIR

Model of “coincidence-detecting”
cell in auditory brain stem.  
Has a subthreshold K+ current  I KLT .



Theory                            PIF  Experiment (Gerbil MSO, slice)

Competing factors:
hyperpolar’zn (farther from Vth)
and hyperexcitable (reduced w)

Dependence on τinh



Boosting Spontaneous Rate with Fast Inhibition, via PIF

Firing Response to Poisson-Gex train Enhanced by Inhibition (Poisson-Ginh)
Gex only: Add Ginh: # of spikes: 10, 15

Std HH model; 100 Hz inputs; τex= τinh=1 ms

w/ R Dodla.    PhysRev E, in press



Adjust param’s changes nullclines:  case of 3 “rest” states

Stable or Unstable?

3 states – not necessarily:
stable – unstable – stable.

3 states Iss
is N-shaped 

Φ small enough,
then both upper/middle 
unstable if on middle branch.



ML: φ large 2 stable steady states 

Neuron is bistable: plateau behavior.

Saddle point, with 
stable and unstable manifolds

V

t e.g., HH with 
VK = 24 mV

Iapp switching pulses



ML: φ small both upper states are unstable

Neuron is excitable with strict threshold.

threshold
separatrix long 

Latency   

Vrest

saddle

IK-A can give long latency 
but not necessary.

Iss must be N-shaped.



Onset of Repetitive Firing – 3 rest states

SNIC- saddle-node on invariant circle

V

wIapp

excitable

saddle-node

limit cycle

homoclinic orbit;
infinite period

emerge w/ large amplitude – zero frequency



Response/Bifurcation diagram
ML: φ small

freq  ~√ I–I1

Firing frequency starts at 0.  low freq but no conductances
very slow

IK-A ?   (Connor et al ’77)

“Type I” onset
Hodgkin ‘48



Firing rate model (Amari-Wilson-Cowan) for 
dynamics of excitatory-inhibitory populations.

τe dre/dt = -re + Se(aee re - aei ri + Ie)

τi dri/dt = -ri + Si(aie re – aii ri + Ii)

ri(t),  re(t)  -- average firing rate (across population and “over spikes”)

τe ,  τi -- “recruitment” time scale 

Se(input) ,  Si(input) – input/output relations, sigmoids

aee etc – “synaptic weights”



Wilson-Cowan Model
dynamics in the phase plane.

Je

Phase plane, nullclines for range of Je.



- Je

Pex

Oscillator death

Regime of repetitive activity

Subthreshold



Frequency

- Je

Type I

Type II

“Oscillator Death”  but cells are firing



Transition from Excitable to Oscillatory 

Type II,   min freq ≠ 0
Iss monotonic
subthreshold oscill’ns
excitable w/o distinct threshold
excitable w/ finite latency

Same for W-C network models.

Type I, min freq = 0
ISS N-shaped – 3 steady states
w/o subthreshold oscillations
excitable w/ “all or none” (saddle) threshold
excitable w/ infinite latency

Hodgkin ’48 – 2 classes of repetiitive firing; 
Also - Class I less regular ISI near threshold





Noise smooths the f-I relation

Type II

Type I

I app

frequency



FS cell
near threshold

RS cell, w/ noise FS cell, w/ noise



Take Home Message

Excitability/Oscillations :  fast autocatalysis + slower
negative feedback

Value of reduced models

Time scales and dynamics

Phase space geometry

Different dynamic states – “Bifurcations”

XPP software:http://www.pitt.edu/~phase/     (Bard Ermentrout’s home page) 


